2022年第二期-凯发棋牌

2022-01-18 泰迪智能科技 26
分享到:

主办单位:

湖北信息技术职业教育集团

泰迪杯数据挖掘挑战赛组委会
承办单位:武汉软件工程职业学院
协办单位:武汉网盒科技有限公司

泰迪智能科技(武汉)有限公司


互联网、大数据、云计算、人工智能等现代信息技术深刻改变着人类的思维、生产、生活、学习方式,深刻展示了世界发展的前景。目前各院校的大数据专业教师匮乏、相关落地动手实战应用能力欠缺、授课过程中相关行业实战案例项目缺失等,为加快建设大数据、人工智能相关专业教师队伍,推动各院校建立人才培训体系和评价体系,特推出全国高校大数据与人工智能师资研修班,每年在全国范围内滚动开展,截止目前已在全国巡回举办50余场,参训教师近6000人次。2022年第二期全国高校大数据与人工智能师资研修班将开设人工智能实战专题(计算机视觉方向),本期研修班以线上线下相结合的形式举办,现将有关安排通知如下:

一、课程特色

1、本研修班课程全程强调动手实操;内容以代码落地为主,以理论讲解为根,以公式推导为辅,通过讲解企业级案例,真正的让学员把所学内容和工作实际有效结合,更好的进行教育教学工作。

2、核心课程部分由讲师手把手一起进行实操演练,在具体应用场景中全面掌握相关技能,助力实训教学工作、实际动手的能力。视频制作精良,讲师真人出镜,全面解析专业必备技能,为相关课程开设和备课、应对科研和项目开发打下坚实基础。

3、课程没有答疑交流讨论群,培训期间助教全程辅助教学,每天提供10小时的实时在线答疑辅导,并进行答疑文档汇总,帮助学员更好地总结学习。

4、本课程配套有基础知识内容,即使零基础学员也能找到合适自己的学习内容和节奏,快速掌握课程知识和技能。

5、所有课程相关源代码、数据、ppt、案例素材全部提供下载,即学即用,教学更轻松!视频内容支持六个月内免费回看,以便复习和参考。

6、全面实践人工智能项目流程,包括数据探索、数据处理、特征工程、数据建模等课程,提供知识讲解,助力夯实理论基础,掌握核心技术。

二、课程安排

专题:人工智能实战(计算机视觉方向)学习时间:2022年01月09日 - 16日,共计42学时
证书颁发:大数据技术应用(高级)费用:2480元(报名费、学习费、资料费等),食宿自理

报名截止时间:2022年01月08日

开班人数:限制在30人

开班地点:武汉软件工程职业学院创新创业大楼10楼

课程模块:、、python机器学习实战、tensorflow2实战、tensorflow2深度学习原理与实现

图像处理实战:水产养殖水质智能识别、计算机视觉实战、动态人脸智能识别

详见附件一: 人工智能实战(计算机视觉方向)课程大纲

三、师资介绍

张敏  广东泰迪智能科技股份有限公司、培训总监,从事用户数据分析和数据挖掘工作六年,具有丰富得大数据挖掘理论及实践培训经验,对数据具有较高的敏感度,根据数据对其进行全面得统计分析。精通python、r语言、matlab等多种数据挖掘工具。擅长市场发展情况监控、精确营销方面得数据挖掘工作。有为南方电网、珠江数码等大型企业长期提供实施服务得经验,主导了电子商务网站用户行为分析及网页智能推荐服务、中医证型关联规则挖掘、电信业务话单量预测、航空公司客户价值分析等多个项目。2017年"泰迪杯数据挖掘挑战赛教练员培训"主讲讲师,2018年广东省python与深度学习技术师资培训班主讲讲师、2018年第一/三/五期全国高校大数据核心技术与应用师资研修班主讲讲师、2019年第一/二/三期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北、湖南省、甘肃省电力系统培训班主讲讲师,先后负责过西安理工大学、广东工业大学、广西师范学院、广西科技大学、闽江学院、广东石油化工学院、上海健康医学院等高校实训课程及德生科技等企业内训和数据挖掘就业班的课程。组织、参与编写图书《》、《》、《r语言编程基础》等。
律波  广东泰迪智能科技股份有限公司高级数据分析工程师,应用统计学硕士,有较强的统计学、数学、数据挖掘理论功底;精通r、python、power bi、excel等数据挖掘分析工具,具有丰富的培训和项目经验,擅长从数据中发掘规律,对数据具有较高的敏感度,逻辑思维能力强,擅长数据可视化,机器学习、深度学习等算法原理的实现,如神经网络、svm、决策树、贝叶斯等;负责"珠江数码大数据营销推荐应用"项目,完成标签库的构建及产品推荐模型;负责"京东电商产品评论情感分析"项目,完成了评论数据情感评价模型、lda主题模型的构建;通过项目案例的转换;负责多个本科类院校数据分析软件培训和毕业生数据分析培训,先后负责广西科技大学、闽江学院、广东石油化工、韩山师范学院、广西师范大学等数据分析软件培训及实训等。多次负责"泰迪杯"数据挖掘大赛题目的构思和实现、赛前培训。大数据专业系列图书编写委员会成员,负责《》、《python实训案例》、《excel可视化案例》等书籍编写工作。
杨惠  广东泰迪智能科技股份有限公司高级,从事人工智能工作多年,擅长计算机视觉和自然语言处理,熟悉常用深度学习算法原理及应用,如神经网络、svm、强化学习等算法;精通tensorflow、python、matlab等常用数据挖掘处理工具。具有丰富的实践项目经验。如"智能聊天客服"项目,"车牌智能识别"项目,"京东电商产品评论情感分析"项目,"珠江数码大数据营销推荐应用"项目;"电子商务网站智能推荐服务"项目;"基于seq2seq注意力模型实现聊天机器人"项目。具备丰富的培训经验,曾为多家企业、院校服务过专业培训工作。如ppv商业培训、泰迪大数据师资培训、珠海城职院数据分析培训;2018年第一/三/五期全国高校大数据核心技术与应用师资研修班主讲讲师,2019年第一/三/五期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北省电力系统培训班主讲讲师。大数据专业系列图书编写委员会成员,负责《》、《r语言编程基础》、《tensorflow2深度学习实战》、《深度学习与计算机视觉实战》等书籍编写工作。
王右雪 泰迪智能科技(武汉)有限公司高级数据分析工程师,应用数学硕士,有较强的统计学、数学、数据挖掘理论功底;精通matlab、python、spss等数据挖掘分析工具;掌握机器学习、深度学习等算法的原理及实现,如神经网络、svm、决策树、贝叶斯等。负责”中南民族大学数据挖掘“赛前培训、中南林业科技大学线上培训等多次培训。


四、证书颁发

学员经  在线培训并考试合格后,可以获得工业和信息化部教育与考试中心签发的"高大数据技术应用职业技术证书"。

五、报名须知

1、报名材料:报名申请表、身份证复印件、两寸近期正面免冠彩色半身证件照电子版(要求:白色背景底,14-20k大小的.jpg格式)。

2、本期研修班由泰迪智能科技(武汉)有限公司收取费用并开具发票。

2022年第二期全国高校大数据与人工智能骨干师资研修班(湖北站)v5.2.pdf

附件一 人工智能实战(计算机视觉方向)课程大纲

基础篇(报名成功后即可开始学习)
时间课程内容学习平台
正式培训前

1 准备工作

2 列表操作

3 程序流程控制语句

4 字符串操作

4.1 字符串及其索引&切片

4.2 字符串的常见方法

4.3 字典的创建及索引

4.4 字典常用操作

4.5 字典推导式

5 python文件读取操作

5.1 python读取文件

5.2 练习3-统计小说中的单词频次

6 函数

6.1 python函数自定义

6.2 联席-自定义求序列偶数个数的函数

7 面向对象与模块

7.1 python方法与函数对比介绍

7.2 python面向对象示例

7.3 python模块使用

7.4 第三方库的安装与调用

8 注意事项

8.1 python工作路径说明

8.2 模块命名及存放路径的注意事项

8.3 结语

泰迪云课堂
正式培训前

1 python数据分析概述

1.1 认识数据分析

1.2 熟悉python数据分析的工具

1.3 安装anaconda与掌握jupyter notebook常用功能

2 numpy数值计算

2.1 掌握numpy数组对象

2.1.1 numpy简介

2.1.2 数组创建及基础属性

2.1.3 处师数组的特点

2.1.4 常见常用数组

2.1.5 数组数据类型

2.1.6 生成随机数

2.1.7 一维数组的索引

2.1.8 逻辑型索引

2.1.9 多维数组的索引

2.1.10 求解距离矩阵

2.1.11 变化数据shape

2.2 掌握numpy矩阵与通用函数

2.2.1 numpy矩阵介绍

2.2.2 numpy通用函数介绍

2.2.3 通用函数的广播机制

2.3 利用numpy进行统计分析

2.3.1 numpy读写二进制文件

2.3.2 numpy读写txt文件

2.3.3 利用numpy对数据进行简单统计分析

3 pandas统计分析基础

3.1 读写不同数据源的数据

3.2.1 pandas读取文本数据

3.2.2 存储数据框

3.2.3 pandas读取excel文件

3.2.4 将数据框存储为excel文件

3.3 数据框与数据框元素

3.3.1 构建数据框

3.3.2 查看数据框的常用属性

3.3.3 按行列顺序访问数据框中的元素

3.3.4 按行列名称访问数据框中的元素

3.3.5 修改数据框中的元素

3.3.6 删除数据框中的元素

3.3.7 描述分析数据框中的元素

3.4 转换与处理时间序列数据

3.4.1 转换成时间类型数据

3.4.2 时间类型数据的常用操作

4.5 使用分组聚合进行组内计算

4.5.1 groupby分组操作

4.5.2 agg聚合操作

4.6 创建透视表与交叉表

4.6.1 生成透视表

4.6.2 生成交叉表

5 使用pandas进行数据预处理

5.1 合并数据

5.1.1 表堆叠

5.1.2 主键合并

5.1.3 重叠合并

5.2 清洗数据

5.2.1 检测与处理重复值

5.2.2 检测与处理缺失值

5.2.3 检测与处理异常值

5.3 标准化数据

5.4 转换数据

5.4.1 哑变量处理

5.4.2 离散化连续型数据

泰迪云课堂
核心课程篇
时间课程内容学习地点
第一课 python机器学习算法原理与实现

2022年1月10日

09:00 - 12:00

14:30 - 17:00

1 机器学习绪论

1.1 引言

1.2 基本术语

1.3 假设空间&归纳偏好

2 模型评估与选择

2.1 经验误差与过拟合

2.2 评估方法

2.3 性能度量

2.4 性能度量python实现

3 回归分析

3.1 线性回归基本形式

3.2 线性回归模型的python实现

3.3 波士顿房价预测的python实现

3.4 逻辑回归介绍

3.5 研究生入学录取预测的python实现

4.1 单个神经元介绍

4.2 经典网络工作流程演示

4.3 神经网络工作流程演示

4.4 如何修正网络参数-梯度下降法

4.5 网络工作原理推导

4.6 网络搭建准备

4.7 样本从输入层到隐层传输的python实现

4.8 网络输出的python实现

4.9 单样本网络训练的python实现

4.10 全样本网络训练的python实现

4.11 网络性能评价

4.12 调用sklearn实现神经网络算法

泰迪云课堂
第二课 tensorflow2实战

2022年1月11日

09:00 - 12:00

14:00 - 17:00

1 任务1:构建一个线性模型

1.1 tensorflow介绍

1.2 tensorflow2常用数据类型和操作

1.3 初始化模型

1.4 构建损失函数

1.5 模型训练及可视化

1.6 使用高阶api-keras

2 任务2:mnist手写数字识别

2.1 数据读取及探索

2.2 交叉熵

2.3 模型构建及训练

2.4 调用保存好的模型对新样本进行预测

3 卷积神经网络cnn

3.1 浅层神经网络的局限

3.2 卷积操作

3.3 卷积操作的优势

3.4 池化及全连接

3.5 高维输入及多filter卷积

3.6 实现卷积操作

3.7 实现池化操作

3.8 作业:使用cnn实现

4 循环神经网络rnn

4.1 循环神经网络简介

4.2 循环神经网络的常见结构

5 长短时记忆网络lstm

5.1 lstm的三个门

5.2 lstm三个门的计算示例

5.3 利用rnn&lstm实现mnist手写数字识别

泰迪云课堂
第三课 综计算机视觉实战

2022年1月12日

09:00 - 12:00

14:00 - 17:00

1 概述

1.1 计算机视觉与深度学习

1.1.1 计算机视觉

1.1.2 深度学习

1.2 应用领域

1.3 相关python库

1.3.1 深度学习框架

1.3.2 图像处理

2 图像处理基本操作

2.1 读写图像

2.1.1 常用图像类型

2.1.2 读入图像

2.1.3 显示图像

2.1.4 写出图像

2.2 图像几何变换

2.2.1 图像平移

2.2.2 图像缩放

2.2.3 图像旋转

2.3 图像增强

2.3.1 灰度级修正

2.3.2 图像平滑

2.3.3 图像锐化

3 图像文件数据批量读取

3.1 opencv读取

3.1.1 获取文件下所有图像路径

3.1.2 统计各个类别的图像数量

3.1.3 批量获取各个图片数组和标签

3.2 图像文件夹读取

3.2.1 image_dataset_from_directory读取文件

3.2.2 批次数据查看

3.3 图像增强

3.3.1 模型中的数据增强处理

3.3.2 imagedatagenerator数据读取时增强

泰迪云课堂
第四课 图像处理实战:水产养殖水质智能识别

2022年1月13日

09: 00 - 12:00

14:00 - 17:00

1.1 案例背景与目标

1.2 读取一张图片数据

1.3 获取图片数据的像素值矩阵

1.4 截取图像的有效区域

1.5 水质图像特征-颜色矩

1.6 三个颜色矩的python实现

1.7 如何进行批量化数据转换

1.8 自定义函数获取指定路径中的所有图片名称

1.9 处理所有图片数据

1.10 数据处理代码整理

1.11 模型构建与性能评估

泰迪云课堂
第五课 综计算机视觉实战:动态人脸智能识别

2022年1月14日

09:00 - 12:00

14:00 - 17:00

1 背景与目标

2.1 调用电脑摄像头拍照

2.2 实现批量拍照

2.3 封装拍照操作的代码

3.1 人脸检测介绍

3.2 实现照片中人脸检测

3.3 过滤人脸不全的照片

3.4 人脸照片的灰度转换及存储

3.5 批量照片处理及存储

3.6 将拍照及数据处理代码封装成类

4.1 获取人名及对应文件夹路径

4.2 自定义独热编码函数

4.3 确认样本和标签对应关系

4.4 定义照片数据转数组数据的函数

4.5 将数据整理代码封装成类

5.1 建模介绍

5.2 定义模型搭建所需的常用方法

5.3 搭建第一个卷积层结构

5.4 测试网络结构

5.5 搭建第二个和第三个卷积层

5.6 搭建第一个全连接层

5.7 搭建网络输出层

5.8 定义模型训练的损失函数-交叉熵

5.9 模型训练准备

5.10 模型训练代码实现

5.11 执行模型训练

5.12 模型性能调优

6.1 调用保存好的模型

6.2 模型性能评价结果

泰迪云课堂
第七课 在线考试

2022年1月15日

高级大数据技术应用职业技术在线考试泰迪云课堂


网站地图